
A Appendix
A.1 Algorithm
In the main text, we have discussed a naive option grounding algorithm:

• Algorithm 1 (IRL-naive): naive option grounding algorithm which performs IRL over all starting states independently.
In this section, we present additional algorithms useful for option grounding:

• Algorithm 2 (IRL module for IRL-naive): the IRL algorithm adapted from [Syed et al., 2008], and used by the IRL-
naive option grounding algorithm (Algorithm 1) to find the option policies starting from each starting state.

• Algorithm 3 (IRL-batch): an efficient option grounding algorithm which improves IRL-naive and performs batched
learning using IRL.

• Algorithm 4: (IRL module for IRL-batch) the IRL module used by the IRL-batch option grounding algorithm (Algo-
rithm 3) to find option policies starting from a batch of starting states.

IRL algorithm for the naive option grounding (Algorithm 2)
First, we introduce the IRL module adapted from [Syed et al., 2008] and used by the IRL-naive option grounding algorithm:

Algorithm 2 IRL (used by Algorithm 1 IRL-naive)

Input: Augmented MDP M = hS 0,A0, P 0, r, �i, starting state sstart, state-action features ✓ : S 0
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Pd

k=1 ✏k, option policy ⇡o
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Compute option policy ⇡o
sstart

(a|s) = µs,aP
a µs,a

The algorithm finds the policy and termination condition of the option ō in the following two steps:
1. Compute the state-action visitation frequencies µs,a such that the corresponding expected feature vector (approximately)

matches the abstract option feature  ō.
2. Compute the option policy (which includes the termination condition) from µs,a.

Linear program. Adapting from prior work which uses linear programming approaches for solving MDPs and IRL [Syed et

al., 2008; Malek et al., 2014; Manne, 1960], our LP aims to find the state-action visitation frequencies µs,a for all states and
actions, which together (approximately) match the abstract option feature, i.e.,  o

start =
P

s,a µs,a✓(s, a) ⇡  ō. In particular,
k o

start � 
ō
k1 

Pd
k=1 ✏k.

Inputs: Recall that to enable the modelling of options and their termination conditions, the input augmented MDP M =
hS

0,A0, P 0, r, �i was constructed in Algorithm 1 by adding a null state snull and termination action aT such that aT leads from
any regular state to snull.

Variables: 1. ✏k: Upper bounds for the absolute difference between the (learner) learned ground option successor feature
and the abstract option (expert) feature in the k-th dimension.

2. µs,a: Expected cumulative state-action visitation of state-action pair s, a. Additionally, denote µs as the expected cumu-
lative state visitation of s, i.e., 8s 2 S, a 2 A,

µs,a = EM,⇡[
1X
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�t
St=s,At=a|s0 ⇠ Pstart], and µs = EM,⇡[

1X

t=0

�t
St=s|s0 ⇠ Pstart] (8)



where Pstart is the distribution over starting states. In this naive option grounding algorithm the start state is a single state sstart.
Observe that µs and µs,a are related by the policy ⇡ : S ! A as

µs,a = ⇡(a|s)µs, and µs =
X

a

⇡(a|s)µs =
X

a

µs,a. (9)

And the Bellman flow constraint is given by either µs or µs,a:

µs = s=sstart + �
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X

a

µs,a = s=sstart + �
X

s0,a

P (s|s0, a)µs0,a (10)

By Equation (9), the policy ⇡ corresponding to the state-action visitation frequencies is computed as

⇡o
sstart

=
µs,a

µs
=

µs,aP
a µs,a

. (11)

Objective function:
P

k ✏k � �1
P

a µsnull, a + �2
P

s µs,aT>0

1.
P

k ✏k: the first term is the feature difference ✏ between the abstract and computed ground option.
2. ��1

P
a µsnull, a : The second term is a small penalty on the option length to encourage short options. This is achieved by

putting a small bonus (e.g., �1 = 0.01) on the expected cumulative visitation of the null state snull, which the agent reaches
after using the terminate action.

3. �2
P

s µs,aT>0: The last term is a regularisation on the number of terminating states. This helps guide the LP to avoid
finding mixtures of option policies which together match the feature expectation.

In this way, the linear program can find an option policy which terminates automatically.
Constraints: Equation (4) is the Bellman flow constraint [Syed et al., 2008; Malek et al., 2014] which specifies how the

state-action visitation frequencies are related by the transition dynamics, see Equation (10). Equations (5) and (6) define the
feature difference ✏ of the ground option  o

sstart
=
P

s,a µs,a✓(s, a) and abstract option  ō for the k-th dimension.
Step 2 derives the policy from the state-action visitation frequencies µs,a, see Equation (11).



Grounding Abstract Options for Starting States in Batches (Algorithm 3)

Algorithm 3 Grounding Abstract Options (IRL-Batch)

Input: MDP M = hS,A, P, r, �i, abstract option  ō, ✏threshold
Output: initiation set I ō, dictionary of ground option policies ⇧ō, termination probabilities ⌅ō

1: // Construct augmented MDP

2: S
0
 S [ {snull},A0

 A [ {aT}, P 0
 P

3: 8s 2 S
0 : P 0(snull | s, aT) = 1; 8a 2 A

0 : P 0(snull | snull, a) = 1

4: // Find ground options for all starting states

5: I ō,⇧ō,⌅ō = MATCH-AND-DIVIDE(S 0
\ {snull})

6: // Recursive Function

7: function MATCH-AND-DIVIDE(cstart)
8: ✏cstart ,⇧

o
cstart
 IRL(S 0,A0, P 0, �, cstart, ō), . for IRL see Algorithm 4

9: cmatch, cno-match, Cambiguous = CLASSIFY(cstart, ⇧o
cstart

, ✏cstart , ✏threshold)
10: for all sstart 2 cmatch do
11: ⇡o

sstart
 ⇧o

cstart
(sstart)

12: I ō  I ō [ {sstart}, ⇧ō(sstart) = ⇡o
sstart

, ⌅ō(sstart) = �o, where �o(s) = ⇡o
sstart

13: end for
14: if Cambiguous 6= ; then
15: for all ci 2 Cambiguous do
16: MATCH-AND-DIVIDE(ci) . Note: Cambiguous is a set of clusters
17: end for
18: end if
19: return I ō,⇧ō,⌅ō

20: end function

21: // Classify start states according to the policy found by IRL

22: function CLASSIFY(cstart,⇧o
cstart

, ✏cstart ,✏threshold)
23: cmatch, cno-match, cambiguous  ;
24: for all sstart 2 cstart do
25: Execute o from sstart to get successor feature  o

sstart
and terminating distribution P o

sstart,s0

26: Compute feature difference ✏osstart
= | ō

� o
sstart

|

27: end for
28: cno-match  cstart if minsstart2cstart ✏

o
sstart

> ✏threshold and ✏cstart > ✏threshold
29: cmatch  {sstart 2 cstart|✏osstart

 ✏threshold}

30: cambiguous  cstart \ cmatch, cno-match

31: if cambiguous 6= ; then . Cluster by termination distributions or successor features(1)
32: Cambiguous  CLUSTER(cambiguous, P o

sstart,s0
)

33: end if
34: return cmatch, cno-match, Cambiguous
35: end function

(1) In practice both approaches work well and address the challenge that the solution found could be a mixture of different option policies

which individually yield different SF but together approximate the target SF. Clustering by SF approaches this issue by enforcing the SF of

option policies from all sstart in a cluster to be similar and match the target. Clustering by termination distribution is an effective heuristic

which groups together nearby sstart, also resulting in options with similar SF.

Based on the naive option grounding algorithm (Algorithm 1), we now introduce an efficient algorithm for grounding abstract
options, which performs IRL over the start states in batches (Algorithm 3).
Challenges. The main challenges regarding performing batched IRL for grounding the options are: 1. By naively putting
a uniform distribution over all possible starting states, the IRL LP cannot typically find the ground options which match the
abstract option. Moreover, a closely related problem as well as one of the reasons for the first problem is 2. Since there are
many different starting states, the state-action visitation frequencies found by the LP for matching the option feature may be a
mixture of different option policies from the different starting states, and the induced ground option policies individually cannot
achieve the successor feature of the abstract option.



Solutions. For the first challenge, we introduce the batched IRL module (Algorithm 4) to be used by IRL-batch. It flexibly
learns a starting state distribution with entropy regularisation.

For the second challenge, Algorithm 3 is a recursive approach where each recursion performs batched-IRL on a set of starting
states. Then, by executing the options from each starting state using the transition dynamics, we prune the starting states which
successfully match the abstract successor option’s feature, and those where matching the abstract option is impossible. And
cluster the remaining ambiguous states based on their option termination distribution (or their achieved successor features) and
go to the next recursion. Intuitively, we form clusters of similar states (e.g., which are nearby and belong to a same community
according to the option termination distribution). And running batched-IRL over a cluster of similar starting states typically
returns a single ground option policy which applies to all these starting states.
Algorithm 3 (IRL-batch: Grounding Abstract Options in Batches). The algorithm first constructs the augmented MDP
with the null states and terminate actions in the same way as the naive algorithm. Then it uses a recursive function Match-And-

Divide(cstart), which first computes the ground option policies corresponding to the set of starting states cstart through batched
IRL (Algorithm 4) over cstart, then Classify the starting states by their corresponding ground options’ termination distributions
or successor feature, into the following 3 categories: 1. cmatch: the start states where an abstract option can be initiated (i.e.,
there exists a ground option whose successor feature matches the abstract option); 2. cno-match: the start states where the abstract
option cannot be initiated; and 3. Cambiguous: a set of clusters dividing the remaining ambiguous states. If Cambiguous is not empty,
then each cluster goes through the next recursion of Match-And-Divide. Otherwise the algorithm terminates and outputs the
initiation set, option policy and termination conditions.

Algorithm 4 IRL (used by Algorithm 3 IRL-Batch)

Input: Augmented MDP M = hS 0,A0, P 0, r, �i,, state-action features ✓ : S 0
⇥A

0
!

d, abstract option  ō
2
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of starting states cstart ✓ S

0
\ {snull}.

Output: (joint over cstart) ground and abstract option feature difference ✏ =
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k=1 ✏k, dictionary of ground option policy
⇧o(sstart) for all start states in cstart

// Step 1: Solve LP for state-action visitation frequencies µs,a
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// Step 2: Compute dictionary of option policies ⇧o
, 8sstart 2 cstart:

8s 2 S, a 2 A
0,⇡o

sstart
(a|s) =

µs,aP
a µs,a

, then add to dictionary ⇧o(sstart) ⇡o
sstart

Algorithm 4 (IRL module for IRL-batch). Compared with the IRL algorithm presented in Algorithm 1, this batched al-
gorithm performs IRL over a batch of starting states. As we discussed in the above challenges, naively putting a uniform
distribution over all possible starting states would typically fail. Therefore, we enable the LP to learn a starting state distribu-

tion pstart
s which best matches the abstract option feature. However, the LP would again reduce to a single starting state which

best matches the abstract option. To counteract this effect, we add a small entropy regularisation to the objective to increase the
entropy of the starting state distribution, i.e., we add �2

P
s p

start
s log pstart

s . Clearly, entropy is not a linear function. In practise,
the objective is implemented using a piecewise-linear approximation method provided by the Gurobi optimisation package.4

4https://www.gurobi.com/

https://www.gurobi.com/


A.2 Feature-based (Variable-reward) SMDP Abstraction
In this section, we provide a general framework for feature-based abstraction using the variable-reward SMDPs. The state
mapping and action mapping functions f(s), gs(o) can be defined to instantiate a new abstraction method.

Definition A.1 (Abstract  -SMDP). Let M = hS,O, P, , �i be a ground  -SMDP. We say that M̄ = hS̄, Ō, P̄ ,  ̄, �i is an

abstract  -SMDP of M if there exists (1) a state abstraction mapping f : S ! S̄ which maps each ground state to an abstract

state, (2) a weight function w : S ! [0, 1] over the ground states such that 8s̄ 2 S̄,
P

s2f�1(s̄) ws = 1, (3) a state-dependent

option abstraction mapping gs : O ! Ō, and (4) the abstract transition dynamics and features are

P̄ ō
s̄,s̄0 =

P
s2f�1(s̄)

ws
P

s02f�1(s̄0)

P
g�1
s (ō)

s,s0 , and  ̄ō
s̄ =

P
s2f�1(s̄)

ws 
g�1
s (ō)

s .

A.3 Reward-based MDP and SMDP abstraction
In the following we define the abstract MDP and abstract SMDPs, following the conventional notations of [Li et al., 2006;
Abel et al., 2016; Ravindran and Barto, 2003].

Definition A.2 (Abstract MDP). Let M = hS,A, P, r, �i be a ground MDP. We say that M̄ = hS̄,A, P̄ , r̄, �i is an

abstract MDP of M if there exists (1) a state abstraction mapping f : S ! S̄ , which maps each ground state to an

abstract state, (2) a weight function w : S ! [0, 1] for the ground states such that 8s̄ 2 S̄ ,
P

s2f�1(s̄) ws = 1,

and (3) a state-dependent action mapping gs : A ! Ā, the abstract transition dynamics and rewards are defined as

P̄ ā
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P
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ws
P
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P
g�1
s (ā)

s,s0 , and r̄ās̄ =
P

s2f�1(s̄)

wsr
g�1
s (ā)

s .

In cases in which multiple ground actions map to the same abstract action, g�1
s (ā) picks one of the ground actions. gs is

commonly defined as the identity mapping [Li et al., 2006; Abel et al., 2016]. We now generalize this definition to abstract
SMDPs:

Definition A.3 (Abstract SMDP). Let M = hS,O, P, r, �i be a ground SMDP. We say that M̄ = hS̄, Ō, P̄ , r̄, �i is an abstract
SMDP of M if there exists (1) a state abstraction mapping f : S ! S̄ which maps each ground state to an abstract state, (2)

a weight function w : S ! [0, 1] over the ground states such that 8s̄ 2 S̄,
P

s2f�1(s̄) ws = 1, (3) a state-dependent option

abstraction mapping gs : ⇥O ! Ō, and (4) the abstract transition dynamics and rewards are

P̄ ō
s̄,s̄0 =

P
s2f�1(s̄)

ws
P

s02f�1(s̄0)

P
g�1
s (ō)

s,s0 , and r̄ōs̄ =
P

s2f�1(s̄)

wsr
g�1
s (ō)

s .

In cases in which multiple ground options map to the same abstract option, g�1
s (ō) picks one of the ground options, e.g., the

option of shortest duration, maximum entropy, etc.

A.4 Relation to Other MDP Abstraction Methods
The framework of MDP abstraction was first introduced by [Dean and Givan, 1997] through stochastic bisimulation, and [Ravin-
dran and Barto, 2002] extended it to MDP homomorphisms. Later, [Li et al., 2006] classified exact MDP abstraction into 5 cat-
egories and [Abel et al., 2016] formulated their approximate counterparts: model-irrelevance, Q⇡-irrelevance, Q⇤-irrelevance,
a⇤-irrelevance and ⇡⇤-irrelevance abstractions. Our successor homomorphism follows the formulation of MDP homomor-
phism [Ravindran and Barto, 2003], which broadly fall into the category of model-irrelevance abstraction, where states are
aggregated according to their one-step/multi-step transition dynamics and rewards. On the other hand, abstraction schemes
which aggregate states according to their Q-values are Q⇤-irrelevance abstraction and a⇤ abstraction, where Q⇤ aggregate
states according to all actions, while a⇤ aggregate states with the same optimal action and Q-value, cf. Figure 1 for an illus-
tration of the induced abstract MDPs. Different from prior abstraction formulations (Definition A.2) which are reward-based,
our feature-based successor homomorphism produces abstract models with meaningful temporal semantics, and is robust under
task changes. Furthermore, we include a generic formulation of feature-based (variable-reward) abstraction (Definition A.1),
which provides a basis for potential feature-based abstractions other than successor homomorphism.

A.5 Proof for Theorem 4.1
Theorem 4.1. Let wr : Rd

! R be a linear reward vector such that ras = wT
r ✓(s, a). Under this reward function, the value of

an optimal abstract policy obtained through the (✏P , ✏ )-approximate successor homomorphism is close to the optimal ground

SMDP policy, where the difference is bounded by
2

(1��)2 , where  = |wr|(2✏ + ✏P |S̄|maxs,a |✓(s,a)|
1�� ). (c.f. appendix for the

proof)

Proof. Given ✏-Approximate Successor Homomorphism: h = (f(s), gs(o), ws) from ground  -SMDP M = hS,O, P, , �i



to abstract  -SMDP M̄ = hS̄, Ō, P̄ , , �i, such that 8s1, s2 2 S, o1, o2 2 O, h(s1, o1) = h(s2, o2) =)

|
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The abstract transition dynamics and features are
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X
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X
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P
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X
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g�1
s (ō)
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We show that given features ✓ : S ⇥A! Rd in the underlying (feature-based) MDP M = hS,A, P,✓, �i, and linear reward
function on the features wr 2 Rd, the difference in value of the optimal policy in the induced abstract SMDP and the ground
SMDP is bounded by 2

(1��)2 , where  = |wr|(2✏ + ✏P |S̄|maxs,a |✓(s,a)|
1�� ).

To show the above error bound, we extend the proof of [Abel et al., 2016] for the error bound induced by approximate MDP
abstraction, which follows the following three steps:

Step 1: Show that 8s1 2 S, o1 2 O, s̄ = f(s1), ō = g(o1) =) |Q(s̄, ō)�Q(s1, o1)| 
✏

1�� .
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ō0
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Q(s̄0, ō0)� P o1

s1,sj max
ō0
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(3) is since the option lasts at least one step and terminates with probability 1:P
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P
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] , expand (4) again using Equation (18) (29)

 + �

✓
+ �max

s2S
[|Q(f(s), gs(o

⇤))�Q(s, o⇤)|]

◆
(30)

 + �+ �2+ . . . 


1� �
(31)

Step 2: The optimal option in the abstract MDP has a Q-value in the ground MDP that is nearly optimal, i.e.:
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where o⇤1 = argmaxo Q(s1, o) and ō⇤ = argmaxō Q(f(s1), ō).
From step 1, we have |Q(s̄, ō)�Q(s1, o1)| 
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Therefore, by step 1 then by optimality: Q(s1, o
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Therefore, Q(s1, o
⇤
1)

Eq.(34)
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1� �

Eq.(35)
 Q(s1, g
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Step 3: The optimal abstract SMDP policy yields near optimal performance in the ground SMDP:

Denote g�1(⇡̄) as the ground SMDP policy implementing the abstract SMDP policy ⇡̄, i.e., at state s, the ground option
corresponding to the abstract option ō chosen by the abstract policy is g�1

s (ō).
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Eq.(37)
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where (1) is because the option terminates with probability 1 and takes at least 1 step.



A.6 Additional Experiment Details
Additional details on the experimental settings

11

11

7

16

11

7

16

16

(a) 2 Rooms, 157 states

11

11

7

16

11

7

16

16

(b) 3 Rooms, 487 states
11

11

7

16

11

7

16

16

(c) 4 Rooms (small), 348 states

11

11

7

16

11

7

16

16

(d) 4 Rooms (large), 1463 states

Figure 4: Object-room layouts used in our experiments. In each object room instance, blue grids are the walls, orange grids are doors, and
there are two types of objects: stars and keys, which can be picked-up by the agent. The agent can pick up a key and use it to open a door.

Object-Rooms: N rooms are connected by doors with keys and stars inside. There are 6 actions, i.e., A = {Up, Down, Left,
Right, Pick up, Open}. The agent can pick up the keys and stars, and use a key to open a door next to it. The agent starts from
the (upper) left room.

Settings for Table 1: The source room where the agent demonstrates and encodes the abstract options is the 2 Room variant.
The 2-4 target rooms setting used for grounding the options are the 2 Rooms in Figure 4 (a), 3 Rooms in Figure 4 (b), and 4
Rooms (large) in Figure 4 (d) variants.

Settings for Figure 1 and Figure 11: The abstract  -SMDP is generated using the setting 4 Room (small) in Figure 4 (c),
where the first 3 rooms each contain a key and a star is in the final room. For Figure 11, the task specifications are as follows:
We refer to transfer as the task transfer, i.e., change of reward function. The total reward is discounted and normalized by the
maximum reward achieved.

• dense reward (no transfer): the agent receives a reward for each key picked up, door opened, and star picked up, i.e., the
reward vector wr = [1, 1, 1] over the features (key, open door, star).

• sparse reward (no transfer): the agent receives a reward for each door opened, i.e., the reward vector wr = [0, 1, 0].

• transfer (w. overlap): overlap refers to the overlap between reward function in the source and target task. In the source
task, the agent receives a reward for each key picked up, and each door opened, i.e., the reward vector wr = [1, 1, 0]. In
the target task, the agent receives a reward for each door opened and star picked up, i.e., the reward vector wr = [0, 1, 1].

• transfer (w.o. overlap): In the source task, the agent receives a reward for each star picked up, i.e., the reward vector
wr = [0, 0, 1]. In the target task, the agent receives a reward for each key picked up, i.e., the reward vector wr = [1, 0, 0].

Settings for Figure 3 and Figure 10: The abstract  -SMDP is generated using the 3 Room setting in Figure 4 (b), where the
first 2 rooms each contains a key and a star, and the final room contains a star. For figure 3, the task specifications is the same
as the above description for Figure 11.

Additional Experiment Results:
In this section, we present additional experimental results.

Classic 4-Rooms. Figure 5 shows the ground option policy learned by IRL-batch on the 4-Room domain. The option is
learned by solving 1 linear program by IRL-batch, i.e., the state-action visitation frequencies returned by the IRL program
corresponds to an optimal policy for all starting states. Please refer to the figure for details of the option.

Minecraft Door-Rooms Experiments: As introduced in Section 5, to test our batched option grounding algorithm (Algo-
rithm 3) on new environments with unknown transition dynamics, we built two settings in the Malmo Minecraft environment:
Bake-Rooms and Door-Rooms. The results on Bake-Rooms can be found in Figure 2 in the main text. Here, we present the
results on the Door-Rooms setting shown in Figure 6.

Training and Results: We compare our algorithm with the following two baselines: eigenoptions [Machado et al., 2018]
and random walk. For this experiment, each agent runs for 20 iterations, with 200 steps per iteration as follows: In the
first iteration, all agents execute randomly chosen actions. After each iteration, the agents construct an MDP graph based
on collected transitions from all prior iterations. The eigenoption agent computes k = 1 eigenoption of the second smallest
eigenvalue (Fiedler vector) using the normalized graph Laplacian, while our algorithm grounds the k = 1 abstract option: open



Figure 5: Ground options learned in the 4-Room domain via Algorithm 3 (presented in the Appendix). The features correspond to indicators
of the room centers (marked in the orange square). Hence, the ground option should move to any one of the four room centres. The option
policy accurately takes the agent from each starting state to a nearby room centre and then terminates.

(a) State visitation (b) number of states explored (c) number of doors opened (d) distance from start

Figure 6: (Minecraft Door-Rooms) Exploring and grounding options in unknown environments. 4 rooms are connected by doors, the agent
starts from the bottom, opens doors and enters the other rooms. The random agent takes random actions. Our agent starts with an iteration of
random walk, then after each iteration, it computes the constructed MDP and fits the ”go to and open door” option, (while the eigenoptions
agent finds an eigenoption), and uses the options for exploration in the next iteration. (a) shows the state visitation frequency in iteration 20 of
our agent (Algorithm 3), and the MDP constructed throughout the 20 iterations. (b)-(d) compares our agent with the baselines on the average
number of the explored states, doors opened and max distance traversed. The results are averaged over 10 seeds and shaded regions show the
standard deviation across seeds. Our agent using abstract successor options explores on average twice as many states as the baselines, as well
as quickly learns to open doors and navigating to new rooms.

door and go to door. In the next iteration, the agents perform random walks with both the primitive actions and the acquired
options, update the MDP graphs, compute new options, . . .

Figure 6 shows our obtained results. Figure 6(a) shows the state visitation frequencies of our algorithm in the 20th iteration
and the constructed MDP graph. The agent starts from the bottom room (R1), and learns to navigate towards the door, open
the door and enter the next rooms. Figures 6(b)-(d) compare the agents in terms of the total number of states explored, number
of doors opened and the maximum distance from the starting location. Note that the door layouts are different from the Bake-
Rooms environment. Our agent explores on average more than twice as many states as the two baselines, quickly learns to open
the doors and navigate to new rooms, while the baselines on average only learn to open the first door and mostly stay in the
starting room.

More details on Minecraft Bake-Rooms: Besides Figure 2, we now present more details of our option grounding algorithm
in environments with unknown transition dynamics in the Minecraft Bake-Rooms experiment. Figures 7, 8 and 9 show the state
visitation frequencies and MDP graph constructed over 20 iterations by our algorithm. The agent starts from the bottom room
R1, a coal dropper is in R2, a potato dropper is in R3. The rooms are connected by doors which can be opened by the agent.
For clarity of presentation, we show the undirected graph constructed. Blue nodes denote explored states and red nodes denote
new states explored in the respective iteration.

The shown figures demonstrate that our agent learns to open the door, and open the door and enter R2 to collect coal in
iteration 2, while the eigenoptions agent learns to collect coal in iteration 18, and the random agent collects a coal block in
iteration 14. Our agent learns to collect potato in R3 in iteration 3, while the eigenoptions agent learns this in iteration 19, and
the random agent has not reached R3 within 20 iterations.

Additional results on abstraction: Figure 10 shows the abstract MDPs in the Object-Rooms with N = 3 rooms. Fig-
ure 10(a) is the abstract  -SMDP model induced by our approximate successor homomorphism, the colors of the nodes match
their corresponding ground states in the ground MDP shown in Figure 10(b). The edges with temporal semantics correspond
to abstract successor options and the option transition dynamics. To avoid disconnect graphs, we can augment the abstract suc-
cessor options with shortest path options, which connect ground states of disconnected abstract states to their nearest abstract



(a) iteration 0 (b) iteration 1 (c) iteration 2 (d) iteration 3

(e) iteration 4 (f) iteration 5 (g) iteration 6 (h) iteration 7

(i) iteration 8 (j) iteration 9 (k) iteration 10 (l) iteration 11

(m) iteration 12 (n) iteration 13 (o) iteration 14 (p) iteration 15

(q) iteration 16 (r) iteration 17 (s) iteration 18 (t) iteration 19

Figure 7: (Our Agent - Algorithm 3) State visitation frequencies and constructed graph per iteration in Minecraft Bake-Rooms



(a) iteration 0 (b) iteration 1 (c) iteration 2 (d) iteration 3

(e) iteration 4 (f) iteration 5 (g) iteration 6 (h) iteration 7

(i) iteration 8 (j) iteration 9 (k) iteration 10 (l) iteration 11

(m) iteration 12 (n) iteration 13 (o) iteration 14 (p) iteration 15

(q) iteration 16 (r) iteration 17 (s) iteration 18 (t) iteration 19

Figure 8: (Eigenoptions Agent) State visitation frequencies and constructed graph per iteration in Minecraft Bake-Rooms



(a) iteration 0 (b) iteration 1 (c) iteration 2 (d) iteration 3

(e) iteration 4 (f) iteration 5 (g) iteration 6 (h) iteration 7

(i) iteration 8 (j) iteration 9 (k) iteration 10 (l) iteration 11

(m) iteration 12 (n) iteration 13 (o) iteration 14 (p) iteration 15

(q) iteration 16 (r) iteration 17 (s) iteration 18 (t) iteration 19

Figure 9: (Random Agent) State visitation frequencies and constructed graph per iteration in Minecraft Bake-Rooms



(a) Abstract  -SMDP (b) Ground MDP

(c) Q-Abstraction w. All Actions (d) Q-Abstraction w. Optimal Action

Figure 10: Abstract MDP with different abstraction schemes. (a) is the abstract MDP induced by our proposed successor homomorphism
and (b) shows how the ground states are mapped to the abstract states. Node colors correspond to the abstract states in (a). (c) and (d) are
abstraction induced by the Q⇤-irrelevance and a⇤-irrelevance abstraction schemes.

states. Figure 10(c) and (d) show the abstract MDPs induced by the Q⇤-irrelevance (Q-all) and a⇤-irrelevance (Q-optimal)
abstraction methods, for the task find key. The distance threshold ✏ = 0.1.

Figure 11 shows the results of using the abstract MDP for planning in the Object-Rooms with N = 4 rooms. Please
refer to Section A.6 for a detailed description of the settings. Our successor homomorphism model performs well across all
tested settings with few abstract states (number of clusters). Since successor homomorphism does not depend on rewards, the
abstract model can transfer across tasks (with varying reward functions), and is robust under sparse rewards settings. Whereas
abstraction schemes based on the reward function perform worse when the source task for performing abstraction is different
from the target task where the abstract MDP is used for planning.



(a) no transfer (dense reward) (b) no transfer (sparse reward) (c) transfer (w. overlap) (d) transfer (w.o. overlap)

(e) no transfer (dense reward) (f) no transfer (sparse reward) (g) transfer (w. overlap) (h) transfer (w.o. overlap)

Figure 11: Performance of planning with the abstract MDPs. The upper row shows the total rewards (normalized by the maximum possible
total rewards) obtained, and the lower row shows the corresponding number of abstract states of the abstract MDP. The x-axes are the distance
thresholds ✏. transfer refers to task transfer (i.e., different reward function)
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